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ABSTRACT		
Appropriate study design forms the basis of any successful 
organized research. Irrespective of the underlying rationale of 
the research question, inappropriate design of an experiment 
or execution of a study may not give a valid result. As defined, 
the research should have the following characteristics: it should 
be undertaken within the framework of a set of philosophies, 
should have an unbiased objective and a design comprising of 
methods and techniques that have been tested for their validity 
and reliability. These principles of research clearly emphasize 
the need for an appropriate study design. The current review 
focuses on the planning and analysis of an observational study 
to obtain significant and accurate findings. 
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Introduction		� 

Observational studies can be broadly categorized into three 
types: cross-sectional, case-control or prospective. Each of 
these three study types have their own merits and demerits 
and the present review discusses the benefits and drawbacks 
of each type in detail.
	 In cross-sectional studies (CSS), the measurements are 
taken at the same time and does not involve manipulation 
of variables. Such studies, are mainly employed for evalu
ating the prevalence of a variable of interest in a population. 
It allows researchers to measure multiple measurements at 
once, and is good for descriptive analysis and generating 
newer hypothesis. The prevalence obtained is important 
for the public health assessment of the disease burden in a 
specified population and in planning and allocating health 
resources. For example, in a CSS we assess burden of high 

blood pressure and presence of heart disease at same point 
of time, and look for possible association between blood 
pressure and heart disease and if found, it would be difficult 
to say which occurred first. Did the heart disease result 
in high blood pressure or blood pressure caused the heart  
disease or heart disease and high blood pressure both toge-
ther caused some other disease(s). The css can be conducted 
using several mode of data collection viz telephone interview,  
face-to-face interview, mailed questionnaire, electronic mail, 
web data collection, any other self-administered question-
naire. Though the design appears very simple, enlisting 
participants who are very similar in one specific variable can 
be difficult. The groups can be affected by cohort differences 
that arise from particular experiences of unique group of 
patients or participants. For example, group of participants 
born in the same time period share important historical 
experiences, while other group born in specific geographic 
locations share experiences limited to their physical loca-
tion. Other disadvantage of this design is the difficulty in 
determine whether outcome followed the exposure in time or 
exposure resulted from the outcome. The CSS are primarily 
designed to measure prevalence rather than incidence and 
not suitable for measuring the rare disease or disease with 
short duration. The associations identified by the design are 
difficult to interpret and is influenced by low response and 
misclassification due to recall bias.
	 Case-control studies (CCS) are often referred to as 
retrospective study because the data on factor of interest 
(viz the cause/determinant of the event) is collected retro-
spectively. They are useful for rare disease or conditions 
or when disease takes long time to become manifest. In a 
CCS, one group will be the subjects having disease or condi-
tion and the another group will be those without disease or 
condition and investigator goes backward into a past time 
to determine the factors or exposures associated with the 
disease development. For example, in a case-control study 
of smoking and lung cancer, the investigator starts the study 
with the group of patents having lung cancer and control 
group without lung cancer. Thorough examination of records 
and/or interviews are performed to determine the presence 
or absence of factors (smoking) that may influence the  
association of smoking with the occurrence of lung cancer. 
The main strengths of CCS are cost-effectiveness and  
possible completion in a short duration. CCS is useful to 
study the exposure or variables that do not change with 
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time and are commonly used for obtaining quick results 
and investigating outbreaks. Since, the case-control studies 
start with subjects with disease or condition, it is may be 
possible to enroll sufficient number of patients with rare 
disease. The disadvantages are that CCS is more expensive 
and less efficient. A limitation of CCS is the bias associated 
with selection of cases and controls from the same study 
population due to the difficulty in finding ‘good match’ con-
trols. Bias may also arise due to the reliance on the recall of 
information that leads to a recall or bias. CCS is not suitable 
to evaluate the prognostic and etiological roles of exposure 
of interest. Selection of controls is more difficult in ccs as 
it is difficult to satisfy the matching criteria of risk factors 
exposures and confounders with that of cases. CCS is often 
used before conducting longitudinal studies.1,2 
	 The prospective or cohort studies involve the assess-
ment of an outcome in subjects subsequent to exposure 
or non-exposure to a treatment. The prospective or cohort 
studies are also known as longitudinal studies. The primary 
objective of cohort studies is to investigate the association 
between exposure and disease prospectively. For example, 
in a prospective study investigator starts with cohorts of 
nondiseased individuals who are exposed to smoking along 
with those unexposed and determine the risk of developing 
lung cancer in future. Here exposure is smoking and disease 
and outcome is lung cancer. The strengths of cohort studies 
are the calculation of disease incidence and evaluation of 
the effect of multiple exposures on the outcome, in a single 
study. Another major advantage of a cohort study is the 
ability to assess temporal relationships and document the 
events before the occurrence of outcome. 

Selection of subjects,  
cases and controls

One of the major issues associated with the design of an 
observational study is the selection of representative subjects 
or participants. Measurement of the entire population is not 
possible in any research especially those studies involving 
human subjects. Hence, it is easier and more practical to 
study selected samples from a predefined population. The 
target population depends on the research question to be 
answered and the sample represents a subset of the larger 
population to be studied. Different techniques for sampling 
are used in observational studies. The sampling frame is the 
population from which the sample is drawn which can even 
be the patients attending a specific hospital.
	 Probability sampling is the method wherein there is a 
finite chance for each participant being selected into study. 
Random sampling is one in which all the subjects within a 
predefined population have an equal probability of being 

included. Another technique is the systematic sampling in 
which the population is divided by the number of subjects 
required (k); then individuals are selected from a random 
starting point. In case, the sample required is 100 out of a 
population of 1000, every 10th individual will be selected 
with the first one being drawn from random number say 3.  
In stratified sampling, the population is divided into strata 
based on predefined population characteristics of interest, 
and participants are then randomly selected from each stra-
tum. This ensures that each stratum is proportionally repre-
sented in the final sample. Cluster sampling is used when a 
using a population list is not feasible and the initial selection 
is performed using a number of a clusters or groups. The 
population is divided into homogeneous clusters in such a 
way that subjects within the clusters are as heterogeneous as 
possible. Cluster should be mutually exclusive and collec-
tively exhaustive. In Multistage cluster sampling technique 
smaller clusters are randomly selected from previously 
selected larger clusters.
	 Nonprobability sampling methods do not ensure equal 
probability to include an individual in the population in 
the sample. Convenience sampling is one such method 
where participants are selected based on availability (e.g. 
hospital staff). If subjects who fit into a particular criterion 
are selected, the sampling is called quota sampling. Refer-
ral sampling (or snowballing) involves participants in the 
sample who have been referred by other participants. In a 
case control study, the selection of appropriate cases for 
evaluation and right control for comparison are important. 

The logic of observational studies and 
the problem of bias

Observational studies are preferred in circumstances where 
hypothesis cannot be evaluated by experiments, and are 
still possible to make argument for cause and effect though 
the usual procedures of statistics when laws of probability 
conferred by randomization cannot be applied. In the ab-
sence of random sampling and assignment of treatments 
or intervention, researcher must be careful in interpreting 
the results of these studies, recognizing the potential for 
error. Thus, it is significant to recognize the potential areas 
where errors can creep in while designing and executing 
observational studies.
	 The most prominent problem in analysis is bias. Bias, 
is defined as an error in design or execution of a study that 
influences and consistently distorts the results in one direc-
tion. Bias does occur even in randomized controlled trials, 
but tends to be lesser when compared to observational 
studies. This overview attempts to analyze the strategies 
to avoid these biases from the point of sample selection, 
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design, and final statistical analysis to enhance the value of 
an observational study.3,4

Sampling

In an ideal situation, if the subjects are randomly assigned 
to the treatment or control groups, the effects caused by the 
intervention is comparable to that of population, thereby 
ensuring lesser impact of the other interfering factors (co-
variables) on the result.5-7 Thus, in a randomized experiment, 
groups prior to the intervention should be comparable to 
ensure that differences in outcomes reflect only the effect 
of intervention. Random assignment is a way to control 
extraneous variables and tends to produce groups that are 
fairly similar on average. In a nonrandomized group, it is 
often the unmeasured characteristics or extraneous variables 
that interfere with the interpretation of the results. Precisely, 
random assignment ensures that the differences between 
study and control prior to treatment are by chance alone-the 
flip of a coin in assigning one subject to treatment, another to 
control-so if a common statistical test rejects the hypothesis 
that the difference is due to chance, then a treatment effect 
is demonstrated.8 
	 Experiments with harmful and unwanted treatments are 
to be avoided since they become impractical when subjects 
refuse to accept the treatment assigned by the researcher. 
Under such circumstances, the effects of treatments can be 
examined by an observational study. Differing outcomes 
may reflect the initial differences rather than effect of the 
treatment.9,10 Differences arising out of the factors that influ-
ence the treatment decision are called selection biases. The 
selection bias are of two types: those that can be accurately 
measured or quantified, called overt biases, and those that 
cannot be measured but can only be suspected to exist, called 
hidden biases. Reducing these overt biases and addressing 
uncertainty related to hidden biases improve the results of 
observational studies.
	 Few aspects of an observational study resemble a rand-
omized experiment. Meticulous sampling of the represen
tative subjects from an observational study should improve 
the results to be generalized to the target population. The 
researcher should ascertain the status of individuals in dif-
ferent groups based on exposure to the intervention, for 
example, the exposed (E) and the unexposed (non E) to 
treatments. In order to assess the effect of the treatment, 
the population characteristics of the two groups should be 
comparable. Various measures and calculations are used in 
observational studies to circumvent them. In studies to esti-
mate the characteristics of a population, in case the samples 
are not appropriately chosen, the data may not reflect the 

true value of the population, as the sample may not be repre
sentative of the true status of the entire population. On the 
contrary, few observational studies are applicable universally 
and can be extrapolated. The risk of a fatal accident on 
driving after consuming alcohol and the pattern of adverse 
reactions in patients on Methotrexate (MTX) are some of 
the examples. In both these conditions, other variables can 
influence the strength of association. In the first example, 
road condition, alcoholism and behavior of the population 
are the influencing factors. With reference to the adverse 
reaction of MTX, the incidence of hepatitis B/C infection 
can affect the association. Confounding factors are defined 
as the characteristics of the population and environment of 
the observation that can influence the outcome of the study. 
In an observational study, confounding factors plays a role 
as there not able to be controlled by investigator. On contrary 
to the experimental studies, the confounders can be effec-
tively controlled. Therefore, appropriate and a representative 
sample is necessary for evaluating the treatment outcome. 
Results of observational studies, from nonrandomized 
samples, cannot be generalized to the entire population, if 
the samples are not chosen appropriately to represent the 
population at large. However, when samples are randomly 
chosen after defining an appropriate sampling frame, the 
laws of probability guarantee that the proportions are equal 
to that of population. The laws of probability also ensure that 
even in circumstances where the sample data and statistics 
are not right on target, they will be closer if the sample sizes 
are large and sample selection follows the representative 
segments of population. A representative random sample 
can statistically derive a true population value.
	 In an intervention-based observational study, researcher 
may not have the opportunity to randomly allocate exposure 
and even sometime may have difficulty in picking samples 
at random from a population. If an appropriate sampling 
from the target population (framed sample) is available, 
there is a possibility to either misclassify the exposure of 
individuals to a risk factor or misdiagnose the disease status 
or both. If our sampling is not random, it is possible that our 
methods for estimating the association will give incorrect 
results, even if the sample has no errors of classification of 
exposure or disease status. In each of these situations, there 
is a serious risk of bias in the estimation of the association 
between exposure and disease.

Design of observational studies

Observational studies are sometimes referred as quasi-
experimental or a natural experiments. These terms indicate 
the perception that even an observational study itself is an 
experiment. However, one of the distinctive features of 
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such studies is that the intervention is more naturalistic than 
planned and controlled. Thus, a well-planned or designed 
observational study can produce a good result, close to an 
experiment. An intervention, as defined, can be a treatment, 
a program, a policy or any other intervention which, in prin-
ciple, may be applied or withheld from a subject under study. 
A variable measured prior to treatment, which is not affected 
by the treatment, is called covariate. A variable measured 
after treatment that changes by the intervention or treat-
ment is the outcome. An analysis that does not differentiate 
between covariates and outcomes introduces bias factor to 
the result, even when none existed. Hence, while planning 
an observational study, one should attempt to identify all the 
variables which could influence the outcome.3,8,10 Some of 
the variables and the scenarios that can influence the study 
are discussed in the following sections:
•	 Key covariates and outcomes are available for treated 

and control groups: The basic component of an 
observational study is the measurement of important 
covariates prior to the treatment. Careful data collection 
should include events occurring over a period of time, 
as in a longitudinal study, that will define a temporal 
sequence of events. There should be a distinction between 
covariates and outcomes. In contrast, data collected in 
a css is at a single point of time and is often based on 
interview. In that case, the distinction between covariates 
and outcomes depends critically on the subjects’ recall. 
Hence, the data may not have the expected sharpness, 
especially with variables like symptoms of past diseases, 
experiences, moods, habits, and events. This creates the 
recall bias, one of the inherent weaknesses of any cross-
sectional study. Some of the variables, like age and sex, 
remain stable whenever they are measured.

•	 Haphazard treatment assignment rather than self-
selection: Deliberate selection of subjects can lead to 
substantial biases in observational studies. For instance, 
in a study attempting to compare the outcome of use 
of steroid in rheumatoid arthritis (RA), absence of 
randomization and rheumatologist’s choice to use steroid 
in patients with more severe RA, can lead to a bias. 
This pretreatment bias will invariably skew the results 
since both case and control are not comparable. Hence, 
the study should reduce this bias by careful choice of 
the subjects to be included in the study. This can be 
achieved by using ‘special populations offering reduced 
self-selection’, that is, restriction of the study population 
to predefined subpopulation of the disease may diminish 
the bias, although it may not completely eliminate bias 
due to self-selection. In the above example of RA, if 
only those patients having moderate to mild disease are 

selected and the role of steroid use is considered, the 
bias of self-selection of severe disease to steroid may be 
reduced. Nevertheless, bias of selection to steroid due to 
other reasons may still exist.

•	 Biases of known direction: In some settings, the 
direction of unobserved biases is quite clear even if 
their magnitude is not. For example, a treatment effect 
may look like an unambiguous conclusion. An obvious 
bias may be working in favor of such conclusion. For 
example, if only patients with severe disease activity 
of ra are recruited, the changes that occur even with 
introduction of symptom modifying drug like NSAID 
may show significant difference than placebo. If this is 
not considered while assessing the changes, the result 
may bias toward the arm with the drug.

Reducing biases

Randomization generates treatment and control groups that 
are comparable prior to treatment. When the sample is not 
randomized, an understanding of the context becomes impor-
tant. It is critical to identify the covariates to be considered 
in the context of the study or the settings. This can create 
subpopulations with reduced selection biases or determine 
the direction of hidden biases. As some of the biases may 
not get eliminated, even the most carefully designed obser
vational study will have weaknesses and ambiguities. A 
single observational study is often indecisive and replication 
is often necessary. In replicating an observational study, one 
should seek to replicate the actual treatment effects, if any, 
without replicating any biases that may have affected the 
original study. Some strategies to achieve this are discussed 
by Cochran.7

	 Generally, three types of bias are distinguished in epide-
miological studies: confounding, selection, and information 
bias. Confounding bias is distinguished from the other two 
and can be corrected by advanced mathematical methods by 
estimating association between exposure and disease. The 
effect of selection and information biases can in no way be 
removed in the data analysis stage. Thus, one needs to take 
adequate steps at the initial designing of the study as well 
as in the execution stages to avoid both selection as well as 
information bias in an observational study.3,8

	 Confounding bias results when the covariates are mixed 
up with each other and it is very difficult to isolate or distin-
guish the effect of each factor individually. For example, in a 
study to estimate the association of smoking as a risk factor 
for heart disease, it is possible that people who are exposed to 
smoking have a higher occurrence of heart disease. However, 
the study sample may not be as clean as it is expected. It is 
possible that people who smoke also drink alcohol; so is it 
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the smoking or alcohol consumption or both responsible for 
the heart disease? Unless these effects are untangled with 
advanced statistical methods, derivation appears to be biased 
by the additional effect of alcohol consumption.
	 Selection bias results in distortion in the estimate of 
association between risk factor and disease that result from 
subject selection. Selection bias could occur because the 
sampling frame is different from the target population or 
the sampling procedure has failed to deliver a sample that 
is a similar to the sampling frame.
	 Information bias is the distortion in the estimate of risk 
factors and disease due to systematic measurement error or 
misclassification of subjects on one or more variables. It 
is important to realize that these errors are not natural and 
they are occurring because the physicians or researchers 
are not careful. These biases do not arise out of a random 
measurement error or misdiagnosis of an individual, but it 
is the method of measurement or classification that is the 
critical issue because it systematically exerts an effect on 
each of the measurements in the sample.

Methods for regulating bias

A confounding factor is one that is related to both the ex-
posure and the outcome variables and that does not lie on 
the causal pathway between them. Ignoring a confounding 
variable, while assessing the association can lead to either 
overestimate or underestimate the true association between 
exposure and outcome, and may even change the direction 
of the observed effect.

Control of Confounding Variable at  
the Design Stage

1.	 Randomization reduces potential for confounding by 
generating groups that are fairly comparable with respect 
to known and unknown confounding variables.

2.	 Restriction eliminates the variable that can interfere as 
a confounder (for example, recruiting only males into 
the study will eliminate the confounding variable, sex 
of the subject).

3.	 Matching involves selection of a comparable group that 
is forced to resemble the index group with respect to the 
distribution of one or more potential confounders. 

	 Among the methods of adjustment for confounding or 
biases, the most direct and intuitive is matching, which com-
pares each treated individual to one or more controls who 
appear comparable in terms of observed covariates. Matched 
sampling is easier when a small group is available together 
with a large reservoir of potential controls and obtaining 
data from controls is not prohibitively expensive. In such 
cases, the standard errors of estimated treatment effects can 

be substantially reduced by matching each treated subject 
to several controls (1:4 or more).11-15

Control of Confounding Variable at  
the Analysis Stage

Conventional approaches

Stratified analysis: In this method, data is divided into 
subgroups to fix the level of the confounding variable, 
such that the confounder does not vary within the subgroup 
and one can evaluate the exposure-disease association 
within each stratum of confounder. The stratified analysis 
works best when there are few strata, i.e. only one or two 
confounders have to be controlled.

Multivariate analysis: If the number of potential confounders 
is large, multivariate analysis offers the best solution.  
A multivariate analysis, such as regression analysis, logistic 
regression, Cox regression, etc. can handle large number of 
confounders simultaneously.16

Newer Approaches to Control Confounders

Graphical approaches: Directed acyclic graph (DAG) is a 
straightforward tool for relating observed variables and their 
statistical associations to causal effect. These diagrams are 
much useful for identifying and controlling the confounders 
when multivariate analysis fails to yield result. DAGs have 
vertices representing events and edges representing causal 
relation between events. DAGs are often acyclic with 
vertices arranged in the linear order of time, all arrows point 
in the same direction as time from parent to child (due to 
causality affecting the future, not the past), and therefore, 
do not have loops.

Propensity scores: There is a growing interest in using 
observational (or nonrandomized) studies to estimate 
the effects of treatment on outcomes. In observational 
studies, treatment selection is often influenced by subject 
characteristics. Consequently, baseline characteristics of 
treated subjects often differ systematically from those 
of untreated subjects. Therefore, one must account for 
systematic differences in baseline characteristics between 
treated and untreated subjects while estimating the effect of 
treatment on outcomes. Historically, researchers have relied 
on the use of regression adjustment to account for differences 
in measured baseline characteristics between the groups. 
Recently, there has been an increasing interest in methods 
based on the ‘propensity score’ to reduce or eliminate the 
effects of confounding variables in observational data. The 
propensity score is the probability of treatment assignment 
conditioned on observed baseline characteristics. The 
propensity score allows one to design and analyze an 
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observational (nonrandomized) study to mimic some of the 
randomized controlled trials. In a nut shell, the propensity 
score is a balancing score where the distribution of observed 
baseline covariates will be distributed or balanced out to be 
similar over treated and untreated subjects. Propensity scores 
are an alternative method to estimate the effect of treatment 
when random assignment of treatments to subjects is not 
feasible. Propensity score matching (PSM) refers to the 
pairing of treatment and control units with similar values 
of propensity score, and possibly other covariates, and 
discarding all unmatched units.13,17 It is normally used to 
compare two groups but can be applied to analyze more than 
two groups. For example, an investigator likes to compare 
the two treatments (new vs standard) in an observational 
setting in ra with a primary end point of change in the 
DAS-28-ESR score at 6 months. In a randomized trial, 
the sample size was estimated to be 448 for 5% level of 
type I error, 80% of statistical power, but for a study where 
randomization is less likely to be done, the sample size would 
increase to 560 for 80% of propensity score, overlapping at 
80% statistical power. By using propensity score, the effect 
of nonrandomization has been compensated by an increase 
in the number.

Instrumental variables: Instrumental variables (IVs) are 
used to control confounding and measurement error in 
observational studies. They allow for the possibility of 
making causal inferences with observational data. Like 
propensity scores, IVs can adjust for both observed and 
unobserved confounding effects.

Marginal structural models: Longitudinal studies in which 
exposures, confounders, and outcomes are measured 
repeatedly over time have the potential to allow causal 
inferences about the effects of exposure on outcome. There is 
particular interest in estimating the causal effects of medical 
treatments (or other interventions) in circumstances in which 
a randomized controlled trial is difficult or impossible. 
However, standard methods for estimating exposure effects 
in longitudinal studies are biased in the presence of time-
dependent confounders affected by prior treatment. Use 
of marginal structural models is more efficient to estimate 
exposure or treatment effects in the presence of time-
dependent confounders affected by prior treatment.

Problems in adjustments

The term over-adjustment is sometimes used to describe the 
control (for example, regression adjustment, stratification, 
restriction) for a variable that increases rather than decreases 
net bias, or that decreases precision without affecting bias. 
In many situations adjustment can increase bias. This may 
be due to reduction in the total causal effect by controlling 

for an intermediate variable In the second case, which we 
term as ‘unnecessary adjustment’ of an effect estimate, may 
cause a difference between the uncontrolled and controlled 
effect estimates, even though no systematic error is present. 
Moreover, adjusting for surrogates (proxies) of intermediate 
variables, either ascending or descending, when the desired 
intermediate variable itself is unmeasured, can have different 
effects on measures of association depending on the nature 
of the proxy.

Summary

In the design of an observational study, an attempt should 
be made to reconstruct some of the structure and strengths 
of an experiment. Analytical adjustments, such as matching, 
are used to control for overt biases, that is, pretreatment 
differences between treated and control groups that are 
visible in observed covariates. There are many possible 
sources of error that can result in systematic distortions of 
study results. These distortions are a problem, especially 
when the researcher is estimating the association between 
a risk factor and a health problem. When a risk factor or a 
protective factor goes undetected, or a behavior or condition 
is unidentified as a risk or protective factor, the implica-
tions can be serious. An erroneously identified risk factor 
may cause unwanted pain and worry among the public, 
and perhaps an unnecessary diversion of research funds. 
Researcher conducting observational studies (cohort, cross-
sectional and, especially, case-control) need to be aware of 
the potential for biases and exert extra caution to eliminate 
or reduce their effect.
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