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scoring systems have evolved over time. Despite this, the selection 
of the best embryo with the maximum implantation potential is 
still far from reality and has resulted in a strong drive for finding 
alternative selection methods.

Fertilization encompasses several morphological changes; 
the prominent one being the appearance of the male and the 
female pronuclei (PN) in the periphery of the oocyte, early in the 
process (as early as 6 hours after insemination), and the rotation 
of the pronucleus into the center by approximately 16–18 hours 
postinsemination, or 56–58 h post-hCG.5–7 The equality and 
alignment of nucleolar precursor bodies (NPB) is the most crucial 

In t r o d u c t i o n
The quest for safer techniques and newer technologies in assisted 
reproduction has been an enduring concern for researchers 
globally. In vitro maturation (IVM) of oocytes has been a technique 
introduced way before the conventional IVF, yet the implantation 
rates and embryo quality associated with this have not been 
impressive. The asynchrony between nuclear and cytoplasmic 
maturation at the cellular level could explain the suboptimal embryo 
quality obtained from in vitro matured oocytes.1 Several approaches 
have been employed to enhance the nucleo-cytoplasmic synchrony 
and the most recent experiments have been on cAMP inhibitors 
like cilostamide that promote cytoplasmic maturation while 
maintaining high levels of intracellular cAMP levels keeping the 
nuclear maturation at check.2,3

The use of cAMP inhibitors thus is postulated to enhance the 
embryo quality but it does not give an insight into the selection 
of best quality embryos for transfer. The identification of the 
embryo with the highest implantation potential is one of the 
greatest challenges in the field of reproductive medicine even 
today. In the current era, embryo selection holds the key to make 
ART practice safer for these patients, as we are inching closer 
toward elective single embryo transfer globally. The techniques 
of embryo selection have evolved ever since the inception of IVF. 
The initial and the most commonly used techniques were based 
on the analysis of the embryo morphology. Embryo selection 
is commonly performed based on the appearance of multiple 
unique morphological characteristics at one or several stages of 
preimplantation development.4 Across the world, different embryo 
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Ab s t r ac t
Background: The study was undertaken to gain insight into the morphology of pronuclear oocytes developed through prematuration culture 
with cilostamide. The criteria such as position and orientation of pronuclei (PN), the size and distribution of nucleolar precursor bodies (NPB), 
alignment of polar body (PB), and the cytoplasmic halo have been included in the study.
Objective: To elucidate the effect of cilostamide on zygote morphology in prematuration culture.
Study design: A prospective analysis of pronuclear zygote morphology developed through IVM with prematuration culture using cilostamide 
conducted from April 2018 to March 2020.
Materials and methods: The present study comprised of 57 zygotes, obtained from the in vitro matured oocytes of 63 patients aged between 
25 and 35 years, who underwent controlled ovarian stimulation for IVF/ICSI.
Results: In pronuclear morphology, the central juxtaposed position was higher in the experimental group (77.1%) than in the control group 
(54.5%). The Group 1 NPB distribution was statistically significant in the experimental group (51.4%) as compared to the control group (22.7%)  
(p = 0.03). Besides, Group 3 NPBs were lower in the experimental group (11.4%) when compared to the control group (36.4%) (p = 0.02). The α-type 
polar body distribution was significantly higher in the experimental group (65.7%) (p = 0.03). Cytoplasmic halo was noted in the experimental 
(60%) and control (45.5%) groups (p > 0.05).
Conclusion: The results indicate that prematuration culture using cilostamide for synchronizing nuclear and cytoplasmic maturation yielded 
a better pronuclear zygote morphology.
Keywords: Cilostamide, Nucleolar precursor bodies, Polar body, Prematuration culture, Pronuclear zygote, Pronuclei.
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Mat e r ia  l s a n d Me t h o d s

Ethical Approval
The study was conducted at a tertiary care reproductive 
medicine unit in India. It was approved by the Institutional 
Review Board and the Nit te Central Ethics Committee 
NU/CEC/2018/0191 NU/CEC/2020/2069. Informed consents were 
obtained from patients prior to the laboratory access of oocytes 
and sperms.

Study Population
The present study comprised of 57 zygotes obtained from the in 
vitro matured oocytes of 63 patients aged between 25 and 35 years, 
who underwent controlled ovarian stimulation (COS) for IVF/ICSI 
from April 2018 to March 2020. The patients with a minimum of four 
germinal vesicles were included in the study Figure 1.

Stimulation Protocol
COS was started on Day 2/3 of menstrual cycle after a baseline 
transvaginal ultrasound scan (Voluson P6 with 4–8 MHz vaginal 
probe) and hormonal assessment [Estradiol (E2), Progesterone (P4), 
Luteinizing hormone (LH) if deemed necessary]. Gonadotropins 
included either recombinant Follicle stimulating hormone, 
[Recagon, Organon, Oss, The Netherlands; GonalF, Merck Serono 
S.p.A, Modugno (Bari), Italy] or human menopausal gonadotropin 
(Menopur; Ferring Leciva, as, Czech Republic). The starting dose was 
calculated based on age, body mass index and antral follicle count 
Figures 2 and 3. It ranged between 112.5 and 187.5 IU daily for 4 days. 
The ovarian response to stimulation was monitored on the fifth day 
of stimulation with transvaginal ultrasound scan and serum E2, LH, 
and progesterone measurements and the dose of gonadotropins 
was adjusted accordingly. A gonadotrophin-releasing hormone 
antagonist (Cetrotide, KGaA, Darmstadt, Germany) 0.25 mg 
was given daily subcutaneously based on a flexible antagonist 
protocol when the dominant follicle was ≥12–14 mm in diameter 
or the serum E2 level was >350–400 pg/mL until the day of 
trigger. The triggering was given when at least three follicles  

morphological change during fertilization. The NPBs are part of 
the nucleoli and are the site of ribosomal RNA (rRNA) production 
where all proteins are constructed.8 These sites are referred to 
as the nucleolar organizing regions (NORs). There are only five 
NOR-bearing chromosomes, in other words, the heterochromatic 
chromosomes: 13, 14, 15, 21, and 22.9

Oocyte maturation involving cytoplasmic maturation brings 
about transcriptional activity in each pronucleus leading to 
the origin of NPBs.10,11 The advent of NPB is time dependent 
and with time, they migrate and merge into the nucleoli. NPBs 
are sites of rRNA synthesis and are necessary for translation 
processes ideally activating the embryonic genome.12 Therefore, 
the precise timing and succession of these events are of  
paramount importance.

The presence of chromosomal abnormalities is the 
primary cause of failed implantations and spontaneous 
miscarriages among embr yos derived from stimulated 
cycles. There can be differences regarding the pattern of 
pronuclear morphology, pertaining to the constitution of the 
conceptus chromosomes.13–15 Thus, the pronuclear and nucleoli 
morphology has been included in the scoring system as the 
association between the patterns observed and can be used 
to predict the embryo development and its corresponding 
implantation potential.16–18

In attempts to improve the developmental competence 
of oocytes by controlling nuclear and cytoplasmic maturation 
through temporary inhibition or attenuation of meiotic progress 
has been applied in different mammals with more or less success. 
Thus, the present study aims to corroborate whether cilostamide 
employed for synchronizing nuclear and cytoplasmic maturation 
has an impact on the zygote morphology with respect to 
pronuclear alignment, size, number, equality, and distribution 
of nucleoli, and the presence or absence of cytoplasmic halos. 
This is the first data set describing the correlation of morphology 
of the pronuclear zygotes with and without the advent  
of cilostamide.

Fig. 1: Distribution of oocytes retrieved and subsequent fertilization and embryo development
MI, Meiosis I; MII, Meiosis II; GV, Germinal vesicle
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solution was made by dissolving crystalline cilostamide in dimethyl 
sulfoxide. A final concentration of 1 μM cilostamide was added to 
the prematuration culture with the intention of achieving efficient 
meiotic inhibition and maximum reversibility of inhibition.

Experimental Setup
Prematuration Culture
The denuded GV-stage oocytes of each patient were distributed 
into two groups and subjected to two dif ferent cultural 
conditions, in other words, the experimental and the control 
groups, and cultured for 6 hours. All immature oocytes were 
cultured individually in 25 μL drops of medium overlaid with 
oil in a humidified atmosphere at 6% CO2 at 37˚C temperature. 
The experimental group oocytes were placed in an IVM 
medium (Oocyte Maturation Medium; Cooper Surgical/SAGE) 
supplemented with 5 mg/mL Serum Protein Substitute and 
FSH/LH (75 mIU/mL for each) (Serono, Mississauga, ON, Canada) 
supplemented with 1 μM cilostamide and the oocytes cultured in 
media without meiotic inhibitor cilostamide were set as control. 
After culturing these GV-stage oocytes for 6 hours, the inhibition 
through cilostamide was removed by transferring them to fresh 
IVM medium without cilostamide and cultured further to attain 
maturity for a maximum of 42 hours.

The maturational status of the oocytes was examined at 26, 36, 
and 48 hours in the experimental and control groups, respectively. 
Oocytes were defined as GV, metaphase I (MI) or MII based on the 
appearance of the first polar body or with the absence of germinal 
vesicle. The transition of oocytes from GV to MII begins with the 
visualization of an ill-defined nuclear envelope (GVBD) to where 

reached ≥17 mm in diameter. Oocytes were aspirated transvaginally 
35–36 h post-triggering under intravenous sedation and ultrasound 
guidance. A single lumen oocyte retrieval needle (Vitrolife Sweden 
AB V.Frölunda, Sweden) was used.

Laboratory Protocol
Preparation of Cilostamide (PDE3-I)
The phosphodiesterase 3 inhibitor - cilostamide (Cayman 
Chemicals) was employed for prematuration culture. The stock 

Fig. 2:  Depicts the scoring system performed by Gianaroli et al., which comprises pronuclear morphology (A–E), nucleolar morphology (1–4), 
and polar body alignment (α, β, γ)

Fig. 3:  Fertilization status of pronuclear zygotes developed from 
GV converted MII oocytes subjected to prematuration culture with 
cilostamide (1 μM) followed by IVM culture



Prematuration Culture on Zygote Morphology

International Journal of Infertility and Fetal Medicine, Volume 13 Issue 1 (January–April 2022)8

longitudinal axis; (β) perpendicular to the longitudinal axis; (γ) in 
different positions.

Re s u lts
In total, 994 oocytes were obtained from 63 patients, of which 
307 were GV oocytes. Morphologically abnormal 37 GV oocytes 
were excluded from the study. A total of 270 viable germinal vesicle 
oocytes obtained were assigned into experimental and control 
groups. A total of 140 GV oocytes in the experimental group were 
exposed to 1 μM cilostamide and 130 GV oocytes in the control group 
were cultured without cilostamide. The total number of MII oocytes 
obtained following IVM culture were 57 and 48 in the experimental 
group and control group, respectively (Fig. 1). Following ICSI, a total 
of 57 pronuclear zygotes were generated as represented in Figure 2.

The prospective investigation included a total of 57 zygotes 
(35 zygotes in the experimental group and 22 in the control group). 
The fertilization rate was higher in the experimental group, 61.4% 
when compared to the control group, 45.8%. However, there 
was no statistically significant difference in the fertilization rates 
(p > 0.05) (Fig. 3).

Fertilization assessment was performed at 17 ± 1 hour. Among 
the distribution of pronuclear morphology, the experimental group 
showed an increased central juxtaposed position of pronucleus as 
compared to the control group. But the distribution was similar in 
both the groups (p > 0.05) (Table 1).

When considering the distribution of NPBs in zygote 
morphology, the NPB were evaluated as per Gianaroli et al. criteria 
based on their position and number within the PN. The large-size 
aligned NPBs (Group 1) were observed in 51.4% of the cilostamide 
treated experimental group and 22.7% in the control group. A 
statistically significant increase in Group 1 NPBs were observed 
in the experimental group than in the control group (p = 0.03). 

neither a GV nor a PB were present (MI) and finally converts into 
MII oocytes with the extrusion of a PB (Fig. 4).

Intracytoplasmic Sperm Injection
ICSI was performed on the GV converted MII oocytes using 
morphologically normal spermatozoa. Following ICSI, these two 
groups (experimental and control groups) of injected oocytes were 
then incubated in 25 μL drops of single-step medium (GTL, VitroLife 
Sweden AB Västra Frölunda, Sweden) for further development.

Assessment of Fertilization and Embryo Development
Zygote Scoring
Pronuclear zygotes were examined under an inverted microscope 
equipped with Hoffman modulation optics to determine the exact 
number, alignment and morphology of PN, NPBs, and polar bodies 
precisely at 17 ± 1 hour after insemination with a magnification 
of 40x objective. The time of examination was minimized in order 
to maintain the temperature and pH of the medium, which may 
affect subsequent embryo development. During observation, 
zygotes were rolled to place both polar bodies and PN in the 
same plane

Zygotes were then classified by the scoring system proposed by 
Gianaroli et al. The scoring system was based on three criteria which 
includes pronuclear morphology (A−E), NPBies morphology,1-4 and 
PB alignment (α, β, γ). (A) juxtaposed and centralized, (B) juxtaposed 
and peripheral, (C) centralized and separated, (D) unequal in size, 
and (E) fragmented. In addition, NPB morphology was evaluated 
according to their position and number within the PN.1 Large size, 
aligned;2 large size, scattered in both PN; large size, aligned in 
one pronucleus and scattered in the other4 small size in at least 
one pronucleus, scattered. The orientation of the polar bodies 
was described in relation to the longitudinal axis of PN: (α) in the 

Fig. 4:  Images of human pronuclear stage zygotes developed from GV oocytes subjected to prematuration culture with cilostamide (1μM) 
followed by in vitro maturation (IVM) culture
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parameters was similar among the experimental and control groups 
(Table 3) (Fig. 4).

In the 48th hour, the present study showed the proportion 
of central and eccentric juxtaposed position, Group 2 NPBs, β 
type PB alignment, was comparatively higher in the experimental 
group than in the control group. The number of PN among the 
experimental and control groups were similar. However, there 
was no statistically significant difference between the two groups 
(p > 0.05) (Table 4).

In the present study the presence of cytoplasmic halos was 
evaluated in the fertilized oocytes. A positive halo effect was 
observed in 31 zygotes, and the absence of cytoplasmic halo 
was observed in 26 zygotes. The proportion of cytoplasmic 
halo was higher in the experimental group in 26 and 36 hours 
as compared to the control group, whereas in 48 hours the 
distribution was similar. However, there was no statistically 
significant difference between the experimental and control 
groups (p > 0.05).

Di s c u s s i o n
An oocyte undergoes several events during development leading 
to its maturation, of which, it is crucial that both nuclear and 
cytoplasmic maturation occur harmoniously to prepare the oocyte 
for resumption of meiosis and to support the events of fertilization. 
A fertilized oocyte is activated by the entry of spermatozoa into 

Whereas, Group 3 NPBs were significantly higher in the control 
group than in the experimental group (p = 0.02) (Table 1).

Based on the distribution of polar bodies in relation to the 
axis of the PN, the alignment of α type PB was significantly 
higher in the experimental group (65.7%) than in the control 
group (36.4%) (p = 0.03). But the distribution of β and γ cohort 
was similar among the experimental and control groups  
(p > 0.05) (Table 1).

Furthermore, the present study showed that the presence of 
cytoplasmic halos and the number of pronuclear zygotes were 
similar between experimental and control groups (p > 0.05).

During the fertilization assessment of GV converted MII 
oocytes at 26 hour, the central and the eccentric juxtaposed 
positions of PN was observed. However, the distribution of these 
positions was similar in both the groups.

In addition, the distribution of Group 1 NPBs was significantly 
higher in the experimental group than in the control group  
(p = 0.03). There was no difference in the distribution of PB 
alignment, cytoplasmic halo, and the number of pronucleus among 
the experimental and control groups (Table 2).

Upon fertilization of GV converted MII oocytes obtained at 
36 hour of IVM culture, a statistically significant increase in Group 
3 NPBs was observed in the control group as compared to the 
experimental group (p = 0.04). The alignment of α type PB was 
significantly higher in the experimental group (70.6%) than in 
the control group (27.2%) (p = 0.27). The distribution of other 

Table 1:  Assessment of fertilization status of GV converted MII oocytes (26, 36 and 48 hours)

Sl. No. Assessment of fertilization Experimental (n = 61.4%) Control (n = 45.8%) p-value

1 Position of pronucleus at 17 ± 1 
Central juxtaposed 27 (77.1) 12 (54.5) 0.07

Eccentric juxtaposed 5 (14.3) 7 (31.8) 0.1

Central nonjuxtaposed 2 (5.7) 2 (9.1) 0.6

Different sizes 1 (2.9) 1 (4.5) 0.7

2 NPBs morphology
Group 1 18 (51.4) 5 (22.7) 0.03*

Group 2 12 (34.3) 7 (31.8) 0.8

Group 3 4 (11.4) 8 (36.4) 0.02*

Group 4 1 (2.9) 2 (9.1) 0.3

3 Polar body alignment
α 23 (65.71) 8 (36.4) 0.03*

β 9 (25.71) 10 (45.5) 0.12

γ 3 (8.58) 4 (18.1) 0.29

4 Cytoplasmic halo
Present 21(60) 10 (45.5) 0.2

Absent 14 (40) 12 (54.5) 0.2

5 No. of pronucleus
2 PN 35 (100) 21 (95.5) 0.7

3 PN -- 1 (4.5) 0.7

NPBs, nucleolar precursor bodies; nucleolar precursor bodies morphology was evaluated according to their position and number within the pronuclei 
(1) large size, aligned;
(2) large size, scattered in both pronuclei;
(3) large size, aligned in one pronucleus and scattered in the other;
(4) small size in at least one pronucleus, scattered. The orientation of polar bodies was described in relation to the longitudinal axis of pronuclei: (α) in the lon-
gitudinal axis; (β) perpendicular to the longitudinal axis; (γ) in different positions. Statistical test-Chi-square test; p < 0.05 is considered statistically significant
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potential.19-22 The data presented in this paper reveals that IVM 
culture with PDE3 I has several aspects leading to the development 
of competent pronuclear zygotes that can generate good quality 
embryos with increased implantation potential. One aspect being 
the position of PN and the number, equality, and alignment of 

it, which triggers a series of events essential for enhancing the 
embryo competence. An asynchrony in the succession of these 
events can cause fertilization failure and uneven divisions. Hence, 
assessing the morphology of fertilized oocytes can provide 
an insight into the embryo development and its implantation 

Table 2:  Assessment of fertilization rate of GV converted MII oocytes, cultured in IVM media for 26 hours among experimental group and  
control group

Sl. No. Assessment of fertilization Experimental (n = 3) Control (n = 9) p-value

1 Position of pronucleus at 17 ± 1 
Central juxtaposed 11 (84.6) 5 (55.6) 0.09

Eccentric juxtaposed 2 (15.4) 4 (44.4) 0.09

2 NPBs morphology
Group 1 9 (69.2) 2 (22.2) 0.03*

Group 2 2 (15.4) 3 (33.3) 0.3

Group 3 2 (15.4) 4 (44.5) 0.14

3 Polar body alignment
α 11 (84.6) 5 (55.6) 0.14

β 2 (15.4) 4 (44.4) 0.14

γ 0 0 --

4 Cytoplasmic halo
Present 9 (69.2) 4 (44.4) 0.2

Absent 4 (30.8) 5 (55.6) 0.2

5 Pronucleus

2 13 (100) 9 (100) -- 

NPBs, nucleolus precursor bodies; IVM,  In vitro maturation; Statistical test-Chi-square test; p < 0.05 is considered statistically significant

Table 3:  Assessment of fertilization rate of GV converted MII oocytes, cultured in IVM media for 36 hours among experimental group and  
control group

Sl. No. Assessment of fertilization Experimental (n = 17) Control (n = 11) p-value

1 Position of pronucleus 
Central juxtaposed 14 (82.4) 6 (54.5) 0.1

Central nonjuxtaposed 1 (5.9) 2 (18.2) 0.3

Eccentric juxtaposed 1 (5.9) 3 (27.3) 0.1

Different size 1 (5.9) 0 (0) 0.4

2 NPBs morphology
Group 1 8 (47.1) 3 (27.3) 0.3

Group 2 7 (41.2) 3 (27.3) 0.4

Group 3 1 (5.9) 4 (36.4) 0.04*

Group 4 1 (5.9) 1 (9.1) 0.7

3 Polar body alignment
α 12 (70.6) 3 (27.2) 0.02*

β 5 (29.4) 6 (54.6) 0.1

γ 0 2 (18.2) 0.07

4 Cytoplasmic halo
Present 10 (58.8) 6 (54.6) 0.8

Absent 7 (41.2) 5 (45.5) 0.8

5 Pronucleus

2 17 (100) 11 (100) -- 

NPBs, nucleolus precursor bodies; IVM, In vitro maturation; Statistical test-Chi-square test; p < 0.05 is considered statistically significant
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Table 1 criteria 1 shows the position and extent of separation of PN 
within the ooplasm. According to Gianaroli et al., the pronuclear 
morphology were of five types.32 However, in our study only four 
types have been observed, the fragmented type was not observed 
in the study. The occurrence of unequal pronucleus sizes or 
distances between the PN has been linked to suboptimal embryo 
quality, lower developmental rates and higher multinucleation rates 
in several studies.17,33,34 These are in agreement with our present 
study which show large differences in position and size of PN in 
pattern C (central nonjuxtaposed) and pattern D (different size). 
According to previous researches, these configurations were often 
found to be associated with chromosomal abnormalities.35 The 
pattern A and B however, show positive results during development. 
Where, central (pattern A) and eccentric (pattern B) juxtaposed PN 
show 77.1 and 14.3% in the experimental group and 54.5 and 31.8% 
in the control group. Thus, zygotes that show juxtaposed PN must 
be prioritized over the others.

The second morphological criterion for zygote evaluation was 
based on the appearance of nucleoli (NPB-NPB) within the PN. NPBs 
majorly serve as an anlage for the development of active ribosome 
synthesizing nucleoli. The NPBs have multiple functions, of which 
organizing and regulating major and minor satellite repeats in the 
nuclei which is crucial.

According to a study by Fulka et al., mouse embryos derived 
from enucleated oocytes showed rRNA syntheses and occurrence 
of pre-rRNA processes, but did not transcribe the major and 
minor satellite repeated sequences necessary to rearrange 
heterochromatin around the centromere for early development of 
the mouse.36,37 Thus, the NPBs should have at least a few proteins 
associated with pericentric heterochromatin remodeling occurring 

NPBs were better among the cilostamide group in comparison 
to the control group showing normal development which is an 
essential event in any mitotic cell. Additionally, an uneven number 
and pattern of NPBs results in abnormal cell cycles which may lead 
to slower and poorer development.23

Microtubule organizing centers of the human sperm play a 
crucial role in the formation of polar axes at syngamy by controlling 
the plane of the first mitotic division thereby arriving at the direct 
apposition of two PN.24-26 Chromatin in both of the PN begins 
to polarize and then rotates to face the other pronucleus at 
apposition.27 Approximately 16–18 hours after insemination, PN 
are in close proximity and appear to touch. Stringent temperature 
control is crucial during this phase since spindle disassembly and 
chromosome dispersal occur at varying temperatures, as have 
been reported at 35°C.28,29 The failure to progress to apposition 
and syngamy could occur due to interferences in the mechanisms 
involved. However, majority of them depend on sperm centrosome 
organization The presence of abnormal pronuclear patterns could 
result from the presence of oocyte cytoplasmic immaturity or 
sperm decondensation defects.30,31 Therefore, in our study sperms 
with normal morphology have only been incorporated taking into 
account these details. Also, as a potential solution to circumvent the 
above-mentioned unfortunate event of cytoplasmic immaturity, 
we have used PDE3 inhibitor cilostamide to manifest the beneficial 
effect of prematuration culture on the developmental competence 
of human GV-stage oocytes matured in vitro.

The results of the observations made at 17 ± 1 hour on 
57 fertilized oocytes were allocated to four main configurations 
(Table  1). The first morphological criterion taken into account 
for zygote evaluation is the position and appearance of the PN. 

Table 4:  Assessment of fertilization rate of GV converted MII oocytes, cultured in IVM media for 48 hours among experimental group and  
control group

Sl. No. Assessment of fertilization Experimental (n = 5) Control (n = 2) p-value

1 Position of pronucleus 
Central juxtaposed 2 (40) 1 (50) 0.8

Central nonjuxtaposed 1 (20) 0 (0) 0.5

Eccentric juxtaposed 2 (40) 0 (0) 0.3

Different size 0 (0) 1 (50) 0.1

2 NPBs
Group 1 1 (20) 0 (0) 0.5

Group 2 3 (60) 1 (50) 0.8

Group 3 1 (20) 0 (0) 0.5

Group 4 0 (0) 1 (50) 0.1

3 Polar body alignment
α 0 0 --

β 2 (40) 0 0.3

γ 3 (60) 2 (100) 0.3

4 Cytoplasmic halo
Present 2 (40) 0 (0) 0.3

Absent  3 (60) 2 (100) 0.3

5 Pronucleus
3 -- 1 (50) 0.1

2 5 (100) 1(50) 0.1

NPBs, Nucleolus precursor bodies; IVM, In vitro maturation; Statistical test-Chi-square test; p < 0.05 is considered statistically significant
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zygotes by clustering mitochondria to perinuclear regions, but 
the physiological significance of mitochondrial redistribution in 
human zygotes is unclear.43,45–48 Moreover, the redistribution of 
mitochondria near the nuclei would allow immature mitochondria, 
such as those in zygotes, to mature on their own, assuming some 
input from the nucleus is required.47,49

In summary, zygotes with closely opposed PN showing distinct 
perinuclear condensation and showing nucleoli aligned at the 
pronuclear interphase were considered to have a good implantation 
potential. The coalescence and remodeling of functional nucleoli 
has a significant impact on cell growth and its functional capacity.50

Therefore, we propose that the assessment of oocyte 
and pronuclear zygote morphology can act as a window for 
predicting the embryo development and its corresponding 
implantation potential.

Co n c lu s i o n
The cornerstone of IVM culture is to provide of an appropriate 
environment for the ooc y tes to at tain developmental 
competence. It has been suggested that an asynchrony between 
nuclear and cytoplasmic maturation could explain the reduced 
ability of the oocyte to support the events during fertilization. 
The present study using a specific inhibitor cilostamide may be 
a significant approach in improving the cytoplasmic maturation 
of immature human oocytes as the results confirm that the 
polarization of NPBs in both PN with the PN being similar in 
size and the presence of cytoplasmic halo was better in the 
experimental group, and therefore the embryo quality and 
development can be enhanced.
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