Keywords :
Iron accumulation, Iron supplementation, Miscarriage, Oxidative stress, Pregnancy
Citation Information :
Jued N, Parvathi VD, L N, Sumitha R. Association of Oxidative Stress and Iron Accumulation in Pregnant Women of Indian Origin with a History of Miscarriage: A Case–Control Study. Int J Infertil Fetal Med 2024; 15 (3):123-129.
Background: Miscarriage is prevalent globally, with oxidative stress being a significant contributing factor, particularly induced by iron accumulation and reduced antioxidant activity. Iron, essential for pregnancy, often leads to nutritional insufficiency, affecting 58% of pregnant women and 33% of the general population globally. It is recommended to take iron supplements to meet the higher needs during pregnancy, but dysregulation in iron homeostasis, including imbalances in transferrin–ferritin and hemolysis, can elevate labile iron pool concentrations, triggering the Fenton reaction leading to reactive oxygen species (ROS). This redox imbalance damages cellular components, particularly placental membranes, potentially leading to ferroptosis and miscarriage. While other research studies have explored these phenomena, only a few have focused on their interrelations, especially within the Indian population.
Objective: This study aims to estimate iron status and oxidative stress due to iron accumulation in pregnant women of Indian origin with a history of miscarriage.
Materials and methods: Blood samples were collected from 22 recruited participants, 11 healthy pregnant women formed the control group, while 11 pregnant women with a history of miscarriage formed the test group and were tested for serum iron levels and malondialdehyde (MDA) indicating oxidative stress were measured.
Results and discussion: The test group exhibited lower hemoglobin and higher serum iron levels compared to the control group, with nil significance in transferrin or ferritin levels. However, the test group showed higher MDA levels, indicating oxidative stress due to iron accumulation-induced oxidative stress. A strong positive correlation between iron and MDA concentrations suggests a link between iron accumulation, lipid peroxidation, and oxidative stress.
Conclusion: Elevated MDA levels associated with high serum iron accumulation support the hypothesis that iron-induced oxidative stress significantly influences early pregnancy loss or miscarriage.
Rahman MM, Abe SK, Rahman MS, et al. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: systematic review and meta-analysis. Am J Clin Nutr 2016;103(2):495–504. DOI: 10.3945/ajcn.115.107896
Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr 2017;106:1559S–1566S. DOI: 10.3945/ajcn.117.155804
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014;75:69–83. DOI: 10.1016/j.freeradbiomed.2014.07.007
Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell 2010;142(1):24–38. DOI: 10.1016/j.cell.2010.06.028
Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol 2015;15(8):500–510. DOI: 10.1038/nri3863
Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol 2004;122(4):369–382. DOI: 10.1007/s00418-004-0677-x
Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44–84. DOI: 10.1016/j.biocel.2006.07.001
Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45(5):549–561. DOI: 10.1016/j.freeradbiomed.2008.05.004
Hurt KJ, Guile MW, Bienstock JL, et al. The Johns Hopkins Manual of Gynecology and Obstetrics. Lippincott Williams & Wilkins; 2012.
Hachem HE, Crepaux V, May-Panloup P, et al. Recurrent pregnancy loss: current perspectives. Int J Womens Health 2017;9:331–345. DOI: 10.2147/IJWH.S100817
Kuppusamy P, Prusty RK, Chaaithanya IK, et al. Pregnancy outcomes among Indian women: increased prevalence of miscarriage and stillbirth during 2015–2021. BMC Pregnancy Childbirth 2023;23(1):150. DOI: 10.1186/s12884-023-05470-3
Schoots MH, Gordijn SJ, Scherjon SA, et al. Oxidative stress in placental pathology. Placenta 2018;69:153–161. DOI: 10.1016/j.placenta.2018.03.003
Shastri L, Mishra PE, Dwarkanath P, et al. Association of oral iron supplementation with birth outcomes in non-anaemic South Indian pregnant women. Eur J Clin Nutr 2015;69(5):609–613. DOI: 10.1038/ejcn.2014.248
Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans 2008;36(6):1267–1271. DOI: 10.1042/BST0361267
Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001;131(2S-2):568S–579S. DOI: 10.1093/jn/131.2.568S
McLean E, Cogswell M, Egli I, et al. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 2009;12(4):444–454. DOI: 10.1017/S1368980008002401
Haider BA, Olofin I, Wang M, et al. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 2013;346:f3443. DOI: 10.1136/bmj.f3443
Yadav K, Arjun MC, Jacob OM, et al. Comparison of different doses of daily iron supplementation for anemia prophylaxis in pregnancy: a systematic review. J Family Med Prim Care 2020;9(3):1308–1316. DOI: 10.4103/jfmpc.jfmpc_960_19
Friedrisch JR, Friedrisch BK. Prophylactic iron supplementation in pregnancy: a controversial issue. Biochem Insights 2017;10:1178626417737738. DOI: 10.1177/1178626417737738
Milman N. Iron prophylaxis in pregnancy—general or individual and in which dose? Ann Hematol 2006;85(12):821–828. DOI: 10.1007/s00277-006-0145-x
McKie AT, Barrow D, Latunde-Dada GO, et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001;291(5509):1755–1759. DOI: 10.1126/science.1057206
Maio N, Zhang DL, Ghosh MC, et al. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin Hematol 2021;58(3):161–174. DOI: 10.1053/j.seminhematol.2021.06.001
Wessling-Resnick M. Iron transport. Annu Rev Nutr 2000;20:129–151. DOI: 10.1146/annurev.nutr.20.1.129
DePalma RG, Hayes VW, O’Leary TJ. Optimal serum ferritin level range: iron status measure and inflammatory biomarker. Metallomics 2021;13(6):mfab030. DOI: 10.1093/mtomcs/mfab030
Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr 2009;89(6):1792–8. DOI: 10.3945/ajcn.2009.27439
West AP Jr, Bennett MJ, Sellers VM, et al. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem 2000;275(49):38135–38138. DOI: 10.1074/jbc.c000664200
Kumar S, Sheokand N, Mhadeshwar MA, et al. Characterization of glyceraldehyde-3-phosphate dehydrogenase as a novel transferrin receptor. Int J Biochem Cell Biol 2012;44(1):189–199. DOI: 10.1016/j.biocel.2011.10.016
Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Ann Rev Nutr 2008;28:197–213. DOI: 10.1146/annurev.nutr.28.061807.155521
Nemeth E, Ganz T. Hepcidin and iron in health and disease. Annu Rev Med 2023;74:261–277. DOI: 10.1146/annurev-med-043021-032816
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020;105(2):260–272. DOI: 10.3324/haematol.2019.232124
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017;8(1):126–136. DOI: 10.3945/an.116.013961
Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 2019;20(13):3283. DOI: 10.3390/ijms20133283
Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 2014;5:45. DOI: 10.3389/fphar.2014.00045
Sane MR, Malukani K, Kulkarni R, et al. Fatal iron toxicity in an adult: clinical profile and review. Indian J Crit Care Med 2018;22(11):801–803. DOI: 10.4103/ijccm.IJCCM_188_18
Rice-Evans C, Burdon R. Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 1993;32(1):71–110. DOI: 10.1016/0163-7827(93)90006-i
Girotti AW. Mechanisms of lipid peroxidation. J Free Radic Biol Med 1985;1(2):87–95. DOI: 10.1016/0748-5514(85)90011-x
Beharier O, Kajiwara K, Sadovsky Y. Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome. Placenta 2021;108:32–38. DOI: 10.1016/j.placenta.2021.03.007
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 2016;113(34):E4966–E4975. DOI: 10.1073/pnas.1603244113
Xu J, Zhou F, Wang X, et al. Role of ferroptosis in pregnancy related diseases and its therapeutic potential. Front Cell Dev Biol 2023;11:1083838. DOI: 10.3389/fcell.2023.1083838
Liochev SI. The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist's view. Metal Ions in Biological System. Routledge; 1999, p. 39. DOI: 10.1201/9780203747605-1
Wenzel SE, Tyurina YY, Zhao J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017;171(3):628–641.e26. DOI: 10.1016/j.cell.2017.09.044
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 2020;29:101402. DOI: 10.1016/j.redox.2019.101402
Seligman PA, Schleicher RB, Allen RH. Isolation and characterization of the transferrin receptor from human placenta. J Biol Chem 1979;254(20):9943–9946. DOI: 10.1016/S0021-9258(19)86649-8
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol 2022;202:115141. DOI: 10.1016/j.bcp.2022.115141
Dennery PA. Oxidative stress in development: nature or nurture? Free Radic BiolMed 2010;49(7):1147–1151. DOI: 10.1016/j.freeradbiomed.2010.07.011
Yiyenoğlu ÖB, Uğur MG, Özcan HÇ, et al. Assessment of oxidative stress markers in recurrent pregnancy loss: a prospective study. Arch Gynecol Obstet 2014;289(6):1337–1340. DOI: 10.1007/s00404-013-3113-4
Omeljaniuk WJ, Socha K, Borawska MH, et al. Antioxidant status in women who have had a miscarriage. Adv Med Sci 2015;60(2):329–334. DOI: 10.1016/j.advms.2015.06.003
Díaz-López A, Ribot B, Basora J, et al. High and low haemoglobin levels in early pregnancy are associated to a higher risk of miscarriage: a population-based cohort study. Nutrients 2021;13(5):1578. DOI: 10.3390/nu13051578
Madazli R, Benian A, Aydin S, et al. The plasma and placental levels of malondialdehyde, glutathione and superoxide dismutase in pre-eclampsia. J Obstet Gynaecol 2002;22(5):477–480. DOI: 10.1080/0144361021000003573
Pietryga M, Dydowicz P, Toboła K, et al. Selected oxidative stress biomarkers in antenatal diagnosis as 11–14 gestational weeks. Free Radic Biol Med 2017;108:517–523. DOI: 10.1016/j.freeradbiomed.2017.04.020
Zein S, Rachidi S, Hininger-Favier I. Is oxidative stress induced by iron status associated with gestational diabetes mellitus? J Trace Elem Med Biol 2014;28(1):65–69. DOI: 10.1016/j.jtemb.2013.09.009
Mbangama AM, Barthélémy TU, Roger MM. Baseline iron status and indices of oxidative stress in a cohort of pregnant women in Kinshasa, DR Congo. Open J Obstet Gynecol 2018;8(14):1476–1486. DOI: 10.4236/ojog.2018.814149
Agarwal A, Aponte-Mellado A, Premkumar BJ, et al. The effects of oxidative stress on female reproduction: a review. Reprod BiolEndocrinol 2012;10:49. DOI: 10.1186/1477-7827-10-49
Sultana Z, Maiti K, Aitken J, et al. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol 2017;77(5). DOI: 10.1111/aji.12653